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INNOVATORS
BUILD ON FIS
We are the innovator’s 
innovator

50%
of the world’s most 

innovative companies 

are clients or partners

ECONOMIES 
RELY ON FIS

Trusted to move the
world’s money. 

$40T
was processed on our 

asset management 

technology in 2022. That’s 

nearly half the world’s total 

and 1.5x

the GDP of the U.S.

BUSINESSES RUN ON 
FIS
Our business is powering business.

95%
of the world’s best banks 

use our technology

80%
of the largest asset 

managers

$112B
Processed in 

transactions last 

year

200K+
Clients worldwide rely 

on our technology

YCLE

POLICY LIFECYCLE

FINTECH THE FINANCIAL WORLD IS BUILT ON

$9.8B
REVENUE

$38.1B
MARKET CAP

FIS TODAY

100%
carbon neutrality and renewable 

energy by 2025
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FIS INSURANCE RISK SUITE

REDUCE
the total cost of owning 

digital technology

GAIN
economies of scale with 

outsourced services

IMPROVE
efficiency and save money 

on business processes

TRUST
34+ years

10,000+ users
70+ countries

RELIABLE
4.73T managed Net 
Written Premiums

COMPLETE
Life, Health, General and 

Annuity



GENERAL INSURERS, 
WE HAVE YOU 
COVERED….
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POLICY LIFECYCLE

8

Write the 
policy

Pre-
Exposure

Claims 
incurredExposure

Claims 
settled

Post 
Exposure



POLICY LIFECYCLE
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Pre-Exposure
Price

GLMs, GAMs

Frequency and severity all periods

Post Exposure

Pre-Claim

IBNR

Paid, incurred, frequency, severity triangles

Frequency and severity this period

Post Exposure

Post Claim

RBNS/Case, IBNER

Paid, incurred triangles

Severity this period, this claim



POLICY LIFECYCLE
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Pre-Exposure Pricing

Post Exposure

Pre-Claim
Reserving

Post Exposure

Post Claim
Reserving
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PREDICTIVE MODELLING
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What is it?

Uses statistics to predict outcomes

Given predictor variables what is an outcome

Synonymous with machine learning

Often referred to as predictive analytics

Predictive 

modelling

Typically refers to 

analysing historical 

data about events 

to make predictions 

about the future.

Uses a 

statistical model 

to predict a 

future event or 

outcome based 

on known data.

Predictive 

analytics



PREDICTIVE MODELLING
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Continuous – Regression

RISK COST CLAIM 

COST



PREDICTIVE MODELLING
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Discrete – Classification

ACCEPT RISK FRAUDULENT 

CLAIM

MANAGE OR 

PAY CLAIM



PREDICTIVE MODELLING FRAMEWORK
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Question

Model‐Building
and Testing

Uncertainty
Evaluation



PREDICTIVE MODELLING FRAMEWORK
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Pre-exposure

Question

Model‐Building 
and Testing

Uncertainty 
Evaluation

What is the total claim cost

GLMs, GAMs

Model testing, validation



PREDICTIVE MODELLING FRAMEWORK
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Post exposure, pre and post claim

Question

Model‐Building 
and Testing

Uncertainty 
Evaluation

Triangles

What is this claim cost

Residuals, actuals vs expected
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MODEL 
PREDICTORS AND 
PREDICTIONS



MODEL PREDICTIONS

19

What affects the outcome?

Cause Effect



DIMENSIONALITY REDUCTION
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What really matters?

• Transformation of data from a high-dimensional space into a low-dimensional space

• Low-dimensional representation retains some meaningful properties of the original data

• Converging to intrinsic dimensions

• Dimensions for shape or colour?

• Shape requires all dimensions

• Colour only requires one



DIMENSIONALITY REDUCTION
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Features

Feature Selection

Find a subset of features

• Filter

• Wrapper

• Embedded (try it and see)
e.g. GLM factor regression

Feature Extraction

Transform the data

• Linear e.g. Principal Component 
Analysis

• Non-Linear e.g. Autoencoder, 
Clustering



MODEL PREDICTORS
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Motor Example

Pricing
• Cover

• Policyholder age

• Location

• Type of vehicle

• Age of vehicle

• Value of vehicle

• Mileage

• Policy duration

• Marital status

• No claims period

• Voluntary excess

• …

Reserving
• Cover

Shape

Colour



MODEL TYPES
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Forecast
• One of the most prominent predictive model types

• Predict future values based on historical data

• Manage metric value predictions by estimating the numeric value for new data based on learnings from historical 
data.

Classification
• Used to assign classes to data

• Generally easier and more cost-effective to implement than predicting continuous values

• Examples of these types of models include binary, multi-class and regression models

Outlier
• Used to identify anomalous data points that do not fit the pattern of the rest of the data

• For example, an outlier model might be used to identify incorrect credit card charges or other fraudulent numbers

• It would look at individual data points to determine whether they are incorrect compared to the rest of the data

Time Series

• Used to predict future events based on past data ordered in a sequence

• It is an econometric technique used to predict future values based on past values

• A time series model uses the trends, seasonality and cyclicality of a system, as well as other factors to forecast 
future behaviour

Clustering
• Used to identify groups of data points that are very similar to each other

• The clustering model is used to group similar items, which can help with tasks like customer segmentation and 
finding the best way to market products



MODEL TYPES – APPLICATIONS
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Forecast Pricing, Reserving

Classification Underwriting decision, fraudulent claim, manage or pay claim

Outlier Fraudulent claim, unusual claim

Time Series Inflation, trends

Clustering Dimensionality reduction, model points
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CURRENT 
APPLICATIONS



MODEL PREDICTORS
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Motor Example

Pricing

• Cover

• Policyholder age

• Location

• Type of vehicle

• Age of vehicle

• Value of vehicle

• Mileage

• Policy duration

• Marital status

• No claims period

• Voluntary excess

• …

Reserving

• Cover



MODEL PREDICTORS
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Motor Example

Pricing

• Cover

• Policyholder age

• Location

• Type of vehicle

• Age of vehicle

• Value of vehicle

• Mileage

• Policy duration

• Marital status

• No claims period

• Voluntary excess

• …

Reserving

• Cover

• Policyholder age

• Location

• Type of vehicle

• Age of vehicle

• Value of vehicle

• Mileage

• Policy duration

• Marital status

• No claims period

• Voluntary excess

• …



MODEL PREDICTORS
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Motor Example

Pricing

• Cover

Reserving

• Cover



MODEL TYPES
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Motor Example

Pricing

• GLM

• GAM

• Other machine learning

• Random Forest

• Gradient Boosting

• Etc.

Reserving

• Triangles



MODEL TYPES
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Motor Example

Pricing

• GLM

• GAM

• Other machine learning

• Random Forest

• Gradient Boosting

• Etc.

Reserving

• Triangles

• GLM

• GAM

• Other machine learning

• Random Forest

• Gradient Boosting

• Etc.



MODEL PREDICTORS
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Motor Example

Pricing

• Cover

• Policyholder age

• Location

• Type of vehicle

• Age of vehicle

• Value of vehicle

• Mileage

• Policy duration

• Marital status

• No claims period

• Voluntary excess

• …

Reserving

• Cover

Overfitting?

• Models the training data too 

well

• Model learns the detail and 

noise in training data

• Negatively impacts the 

performance of the model on 

new data

• Noise or random fluctuations 

in training data picked up 

and learned as concepts by 

the model

Underfitting?

• Model can neither model 

training data nor generalize 

to new data

• Not a suitable model



WHAT MATTERS
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SHAP Values - Claim Severity, Gradient BOOST Model
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GLM Regression – Claim Severity

AGEBAND DURATION MARITAL MILEAGE_BAND NCD_YRS PERIL RATING_AREA SEX VEHICLE_AGE VEHICLE_GRP VEHICLE_VALUE VOL_EXCESS

GLM Backwards      

GLM Forwards ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GLM Bi-Directional ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓



WHAT MATTERS
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GLM Regression and Boosting – Claim Severity

Glass box

Black box

AGEBAND DURATION MARITAL MILEAGE_BAND NCD_YRS PERIL RATING_AREA SEX VEHICLE_AGE VEHICLE_GRP VEHICLE_VALUE VOL_EXCESS

GLM Backwards      

GLM Forwards ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GLM Bi-Directional ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Gradient BOOST ✓ ✓ ✓ ✓



WHAT MATTERS

35

SHAP Values - Claim Severity, Attritional Large Split
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SHAP Values - Claim Severity, Attritional Large Split
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RESERVING
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Why not using Machine Learning and more predictors

Triangles aggregate data 
for statistical significance
Not statistically significant 

enough if split?

Investigating individual 
claim reserving methods

Quality and availability of 
detailed claims data?

Claims development 
based on current paid and 

estimate levels

Triangles widely 
understood and accepted

Machine learning less 
explainable



PRICING

38

Why not using other Machine Learning algorithms

Glass box

Black box

GLMs and GAMs more 

widely understood, 

accepted and 

programmable

Other machine learning 

algorithms less 

explainable



EXPLAINABILITY
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Interpretability

Vs

Performance



EXPLAINABILITY
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Reduce and Refine Data

GLM, GAM

Boosted 

Decision 

Trees

Glass box

Black box

Triangles



MODEL COMPARISON
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Claim Severity



FEAR OF THE UNKNOWN OR BEING DIFFERENT?
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THE FUTURE



WHAT’S IMPORTANT
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NO ONE SIZE FITS ALL

NEED TO HAVE ROBUST 
SOLUTION TO BE ABLE 
TO APPLY TECHNIQUES 

TO OWN DATA

HAVE ALL TOOLS IN 
ONE PLACE TO SEE AND 
UNDERSTAND WHAT’S 

GOING ON



HYBRID MODELS

45

Reduce and Refine Data

Feature extraction 

instead of feature 

selection

Clustering to group 

risks and claims for 

applying models 

Dimensionality 
reduction or 

expansion to identify 
intrinsic dimensions 

for each of pricing and 
reserving



HYBRID MODELS
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Explainability Options

Traditional learning with 

refined data e.g.

• GLM

• GAM

• Triangles

Advanced machine 

learning using explanatory 

techniques

• Local interpretation

• Global interpretation



HYBRID MODELS
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Explainability Options

CONSIDER 

MULTIPLE 

MODELS

COMPARE AND 

CONTRAST

IDENTIFY 

DRIVERS OF 

DIFFERENCE
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SOLUTION 
PERSPECTIVE



INSURANCE RISK SUITE

GI EDITION

Actuaries Underwriters Risk Managers



INSURANCE RISK SUITE

GI EDITION

Out of the box 
functionality

Transparent 
customisable 
calculations

Rapid development 
environment



AI AND 
MACHINE 
LEARNING

Ask us what we are doing …



GI EDITION IS 
READY … 
ARE YOU?



©2024 FIS and/or its subsidiaries. All Rights Reserved. FIS confidential and proprietary information. 



THANK YOU FOR 
LISTENING

GI EDITION IS 
READY … 
ARE YOU?



Thank you for joining today’s 

PRICING AND RESERVING 

LIFECYCLE session

Any questions? 
Feel free to reach out to me: 

neil.covington@fisglobal.com
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