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With 30 years of industry experience, including
serving as Chief Actuary and Head Actuary for
multi-line, multinational businesses, Neil
Covington’s expertise covers the design,
development and implementation of risk models.

With a knack for translating complex concepts to
diverse audiences, Neil specializes in capital
modelling, IFRS 17, reserving, pricing and Al/ML.
At FIS, he is also responsible for global Gl and
Al/ML insurance solutions management and
development, alongside pre-sales and
professional services support.
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FIS INSURANCE RISK SUITE
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PREDICTIVE MODELLING

What is it?

L



PREDICTIVE MODELLING

Continuous — Regression

A

RISK COST
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CLAIM
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PREDICTIVE MODELLING

Discrete — Classification

ACCEPT RISK  FRAUDULENT
CLAIM
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MANAGE OR
PAY CLAIM
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PREDICTIVE MODELLING FRAMEWORK
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PREDICTIVE MODELLING FRAMEWORK

Pre-exposure
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PREDICTIVE MODELLING FRAMEWORK

Post exposure, pre and post claim
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MODEL PREDICTIONS

What affects the outcome?

SIS L



DIMENSIONALITY REDUCTION

What really matters?

Transformation of data from a high-dimensional space into a low-dimensional space

Low-dimensional representation retains some meaningful properties of the original data

Converging to intrinsic dimensions

Dimensions for shape or colour?
» Shape requires all dimensions
+ Colour only requires one

-

SIS
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DIMENSIONALITY REDUCTION

Features

Feature Selection Feature Extraction

Transform the data

Find a subset of features

* Filter
* Wrapper
« Embedded (try it and see)

* Linear e.g. Principal Component
Analysis

* Non-Linear e.g. Autoencoder,

e.g. GLM factor regression Clustering

HI=
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MODEL PREDICTORS
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MODEL TYPES
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MODEL TYPES - APPLICATIONS
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MODEL PREDICTORS

Motor Example
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MODEL PREDICTORS

Motor Example
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MODEL PREDICTORS

Motor Example
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MODEL TYPES

Motor Example
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MODEL TYPES

Motor Example
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MODEL PREDICTORS

Motor Example
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WHAT MATTERS

SHAP Values - Claim Severity, Gradient BOOST Model

Waterfall Plot - Single Example
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WHAT MATTERS

GLM Regression — Claim Severity

AGEBAND DURATION MARITAL MILEAGE_BAND NCD_YRS PERIL RATING_AREA SEX VEHICLE_AGE VEHICLE_GRP VEHICLE_VALUE VOL_EXCESS

GLM Backwards
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WHAT

MATTERS

GLM Regression and Boosting — Claim Severity

GLM Backwards
GLM Forwards
GLM Bi-Directional

Gradient BOOST

SIS
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WHAT MATTERS

SHAP Values - Claim Severity, Attritional Large Split

kernelSHAP DT Attritional - bar plot
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WHAT MATTERS

SHAP Values - Claim Severity, Attritional Large Split
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RESERVING

Why not using Machine Learning and more predictors

~IS

Triangles aggregate data

for statistical significance

Not statistically significant
enough if split?

Quality and availability of
detailed claims data?

Claims development
based on current paid and
estimate levels

Investigating individual
claim reserving methods

Triangles widely
understood and accepted

Machine learning less
explainable
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PRICING

Why not using other Machine Learning algorithms

GLMs and GAMs more
widely understood,
accepted and
programmable

SIS

Other machine learning
algorithms less
explainable
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EXPLAINABILITY

Reduce and Refine Data
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MODEL COMPARISON

Claim Severity
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THE FUTURE
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WHAT’S IMPORTANT

WG ® e

NEED TO HAVE ROBUST HAVE ALL TOOLS IN

SOLUTION TO BE ABLE ONE PLACE TO SEE AND

TO APPLY TECHNIQUES UNDERSTAND WHAT’S
TO OWN DATA GOING ON

NO ONE SIZE FITS ALL

\_ /

IS 1




HYBRID MODELS

Reduce and Refine Data

Feature extraction Clustering to group
instead of feature risks and claims for
selection applying models

SIS

Dimensionality
reduction or
expansion to identify
intrinsic dimensions
for each of pricing and
reserving
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HYBRID MODELS

Explainability Options

Traditional learning with Advanced machine
refined data e.g. learning using explanatory
+ GLM techniques
+ GAM * Local interpretation
» Triangles * Global interpretation

SIS "



HYBRID MODELS

Explainability Options

-

CONSIDER
MULTIPLE

MODELS
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COMPARE AND
CONTRAST

o

IDENTIFY
DRIVERS OF
DIFFERENCE
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INSURANCE RISK SUITE
Gl EDITION

Actuaries Underwriters Risk Managers



INSURANCE RISK SUITE
Gl EDITION
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Out of the box Rapid development
functionality customisable environment
calculations
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Ask us what we are doing ...
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Thank you for joining today’s
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